Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 131(15)2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076240

RESUMO

In order to replicate, most pathogens need to enter their target cells. Many viruses enter the host cell through an endocytic pathway and hijack endosomes for their journey towards sites of replication. For delivery of their genome to the host cell cytoplasm and to avoid degradation, viruses have to escape this endosomal compartment without host detection. Viruses have developed complex mechanisms to penetrate the endosomal membrane and have evolved to co-opt several host factors to facilitate endosomal escape. Conversely, there is an extensive variety of cellular mechanisms to counteract or impede viral replication. At the level of cell entry, there are cellular defense mechanisms that recognize endosomal membrane damage caused by virus-induced membrane fusion and pore formation, as well as restriction factors that block these processes. In this Cell Science at a Glance article and accompanying poster, we describe the different mechanisms that viruses have evolved to escape the endosomal compartment, as well as the counteracting cellular protection mechanisms. We provide examples for enveloped and non-enveloped viruses, for which we discuss some unique and unexpected cellular responses to virus-entry-induced membrane damage.


Assuntos
Endossomos/virologia , Animais , Humanos , Membranas Intracelulares/virologia , Internalização do Vírus , Replicação Viral/fisiologia , Vírus/patogenicidade
2.
Cell Host Microbe ; 23(5): 636-643.e5, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29681460

RESUMO

Human type A Enteroviruses (EV-As) cause diseases ranging from hand-foot-and-mouth disease to poliomyelitis-like disease. Although cellular receptors are identified for some EV-As, they remain elusive for the majority of EV-As. We identify the cell surface molecule KREMEN1 as an entry receptor for coxsackievirus A10 (CV-A10). Whereas loss of KREMEN1 renders cells resistant to CV-A10 infection, KREMEN1 overexpression enhances CV-A10 binding to the cell surface and increases susceptibility to infection, indicating that KREMEN1 is a rate-limiting factor for CV-A10 infection. Furthermore, the extracellular domain of KREMEN1 binds CV-A10 and functions as a neutralizing agent during infection. Kremen-deficient mice are resistant to CV-A10-induced lethal paralysis, emphasizing the relevance of Kremen for infection in vivo. KREMEN1 is also essential for infection by a phylogenetic and pathogenic related group of EV-As. Collectively these findings highlight the importance of KREMEN1 for these emerging pathogens and its potential as an antiviral therapeutic target.


Assuntos
Enterovirus Humano A/metabolismo , Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/metabolismo , Proteínas de Membrana/metabolismo , Internalização do Vírus , Animais , Antígenos de Superfície , Linhagem Celular , Linhagem Celular Tumoral , Enterovirus/patogenicidade , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Feminino , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Doença de Mão, Pé e Boca/virologia , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Mutagênese , Filogenia , Domínios Proteicos
3.
Nature ; 541(7637): 412-416, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28077878

RESUMO

Picornaviruses are a leading cause of human and veterinary infections that result in various diseases, including polio and the common cold. As archetypical non-enveloped viruses, their biology has been extensively studied. Although a range of different cell-surface receptors are bound by different picornaviruses, it is unclear whether common host factors are needed for them to reach the cytoplasm. Using genome-wide haploid genetic screens, here we identify the lipid-modifying enzyme PLA2G16 (refs 8, 9, 10, 11) as a picornavirus host factor that is required for a previously unknown event in the viral life cycle. We find that PLA2G16 functions early during infection, enabling virion-mediated genome delivery into the cytoplasm, but not in any virion-assigned step, such as cell binding, endosomal trafficking or pore formation. To resolve this paradox, we screened for suppressors of the ΔPLA2G16 phenotype and identified a mechanism previously implicated in the clearance of intracellular bacteria. The sensor of this mechanism, galectin-8 (encoded by LGALS8), detects permeated endosomes and marks them for autophagic degradation, whereas PLA2G16 facilitates viral genome translocation and prevents clearance. This study uncovers two competing processes triggered by virus entry: activation of a pore-activated clearance pathway and recruitment of a phospholipase to enable genome release.


Assuntos
Citoplasma/virologia , Genoma Viral , Fatores Celulares Derivados do Hospedeiro/metabolismo , Fosfolipases A2 Independentes de Cálcio/metabolismo , Picornaviridae/genética , Picornaviridae/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Internalização do Vírus , Animais , Autofagia , Transporte Biológico , Linhagem Celular , Citoplasma/genética , Endossomos/metabolismo , Feminino , Galectinas/genética , Galectinas/metabolismo , Fatores Celulares Derivados do Hospedeiro/deficiência , Fatores Celulares Derivados do Hospedeiro/genética , Humanos , Masculino , Camundongos , Mutação , Fenótipo , Fosfolipases A2 Independentes de Cálcio/deficiência , Fosfolipases A2 Independentes de Cálcio/genética , Supressão Genética , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Vírion/genética , Vírion/metabolismo , Replicação Viral
4.
Proc Natl Acad Sci U S A ; 113(5): 1399-404, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787879

RESUMO

Enterovirus D68 (EV-D68) is an emerging pathogen that can cause severe respiratory disease and is associated with cases of paralysis, especially among children. Heretofore, information on host factor requirements for EV-D68 infection is scarce. Haploid genetic screening is a powerful tool to reveal factors involved in the entry of pathogens. We performed a genome-wide haploid screen with the EV-D68 prototype Fermon strain to obtain a comprehensive overview of cellular factors supporting EV-D68 infection. We identified and confirmed several genes involved in sialic acid (Sia) biosynthesis, transport, and conjugation to be essential for infection. Moreover, by using knockout cell lines and gene reconstitution, we showed that both α2,6- and α2,3-linked Sia can be used as functional cellular EV-D68 receptors. Importantly, the screen did not reveal a specific protein receptor, suggesting that EV-D68 can use multiple redundant sialylated receptors. Upon testing recent clinical strains, we identified strains that showed a similar Sia dependency, whereas others could infect cells lacking surface Sia, indicating they can use an alternative, nonsialylated receptor. Nevertheless, these Sia-independent strains were still able to bind Sia on human erythrocytes, raising the possibility that these viruses can use multiple receptors. Sequence comparison of Sia-dependent and Sia-independent EV-D68 strains showed that many changes occurred near the canyon that might allow alternative receptor binding. Collectively, our findings provide insights into the identity of the EV-D68 receptor and suggest the possible existence of Sia-independent viruses, which are essential for understanding tropism and disease.


Assuntos
Enterovirus Humano D/metabolismo , Receptores Virais/metabolismo , Animais , Linhagem Celular , Haploidia , Humanos , Receptores Virais/genética
5.
Science ; 350(6264): 1092-6, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26472760

RESUMO

Although the genes essential for life have been identified in less complex model organisms, their elucidation in human cells has been hindered by technical barriers. We used extensive mutagenesis in haploid human cells to identify approximately 2000 genes required for optimal fitness under culture conditions. To study the principles of genetic interactions in human cells, we created a synthetic lethality network focused on the secretory pathway based exclusively on mutations. This revealed a genetic cross-talk governing Golgi homeostasis, an additional subunit of the human oligosaccharyltransferase complex, and a phosphatidylinositol 4-kinase ß adaptor hijacked by viruses. The synthetic lethality map parallels observations made in yeast and projects a route forward to reveal genetic networks in diverse aspects of human cell biology.


Assuntos
Redes Reguladoras de Genes , Genes Essenciais , Genes Letais , Aptidão Genética/genética , Haploidia , Complexo de Golgi/genética , Hexosiltransferases/genética , Humanos , Proteínas de Membrana/genética , Mutagênese Insercional , Mutação , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...